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Abstract. Theory of magnetoquantum oscillations with spin-split structure in strongly anisotropic (two-
dimensional (2D)) metal is developed in the formalism of level approach. Parametric method for exact
calculation of oscillations wave forms and amplitudes, developed earlier for spin degenerate levels is gener-
alized on a 2D electron system with spin-split levels. General results are proved: 1) proportionality relation
between magnetization and chemical potential oscillations accounting for spin-split energy levels and mag-
netic field unperturbed levels (states of reservoir), 2) basic equation for chemical potential oscillations
invariant to various models of 2D and 1D energy bands (intersecting or overlapping) and localized states.
Equilibrium transfer of carriers between overlapping 2D and 1D bands, characterizing the band structure
of organic quasi 2D metals, is considered. Transfer parameter, calculated in this model to be of the order of
unity, confirms the fact that the wave form of oscillations in organic metals should be quasisymmetric up to
ultralow temperature. Presented theory accounts for spin-split magnetization oscillations at magnetic field
directions tilted relative to the anisotropic axis of a metal. Theoretical results are compared with available
experimental data on organic quasi-2D metal α-(BEDT-TTF)2KHg(SNC)4 explaining the appearance of
clear split structure under the kink magnetic field and absence above by the corresponding change in the
electron g-factor rather than cyclotron mass.

PACS. 75.20.-g Diamagnetism, paramagnetism, and superparamagnetism – 75.20.En Metals and alloys –
75.30.Cr Saturation moments and magnetic susceptibilities

1 Introduction

Magnetoquantum oscillations in metals under high quan-
tizing magnetic field (de Haas-van Alphen (dHvA) and
Shubnikov-de Haas (SdH) effects) are widely utilized for
obtaining essential identity properties of metals: topology
of Fermi surface and constituent band structure parame-
ters such as effective band masses and Fermi energy [1].
Appropriate cyclotron mass, mc, can be extracted from
temperature dependence of oscillations amplitudes, the
Fermi energy – from measurements of fundamental fre-
quency of oscillations. Spin-splitting of quantum energy
levels (Landau levels (LL)) leads to the characteristic spin-
split structure of oscillations and can reveal such property
as electron g-factor.

Magnetization and resistance oscillations with spin-
split structure were revealed in a number of experiments
on organic quasi-two-dimensional (2D) metals [2,3], es-
pecially with magnetic field direction being tilted rela-
tive to the anisotropic axis [4] of a metal. Clear spin-
split structure has been observed in organic conductor α-
(ET)2KHg(SNC)4 [5–7] (ET further on stands for BEDT-
TTF). Recently spin-splitting around the high magnetic
field phase transition in this organic metal (around the
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kink field of about BK = 23 T) was investigated and val-
ues of the parameter gmc/me under and above transition
field were established [8] (me is the electron mass). Mag-
netization oscillations with weakly shown spin-split struc-
ture at ultralow temperature (T = 0.035 K) (maybe due
to the small angle in the torque experiment (Θ = 3◦) [9]
and partly to the relatively high Dingle temperature in the
samples used) was observed in organic metal κ− (ET)2I3

in reference [10], the wave form of spin-split magnetization
being interpreted by the numerical fit for the ensemble of
quantized carriers, not accounting for the reservoir of car-
riers on magnetic field independent levels.

Pronounced spin-split structure was reported in our
work [11] on organic metal κ− (ET)2I3 at tilt angles near
first spin-splitting zero. In that work the conditions for the
appearance of spin-split structure (corresponding temper-
ature, magnetic field and spin-splitting of energy levels)
were determined. Spin-split structure arises more clearly
in pure samples (those with low Dingle temperature), at
ultralow temperature where the parameter for tempera-
ture smoothing Q = ~ωc/kBT (ωc = eB/mcc is the cy-
clotron frequency, B is the magnetic induction) becomes
relatively large, for tilt angles providing the substantial
magnitude of the spin-splitting parameter s = ∆s/~ωc (∆s

is the energy difference between nearest levels with spin up
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Fig. 1. Chemical potential oscillations in a 2D metal with spin-split Landau levels. Chemical potential oscillations are drawn
according to the parametric equations (23–25) for transfer parameter, cR: curve 1: cR = 0.1, curve 2: 1.0, curve 3: 10. Spin-split
levels are drawn according to equations (2, 3): levels with spin projections along magnetic field are shown by solid lines, those
with spin opposite to the field – by dotted lines, middles between levels – by dashed lines (6 spin-split levels are shown sufficient
for exact calculation of the magneto-quantum oscillations in the entire region of spin-splitting parameter 0 6 s ≡ ∆s/~ωc 6 0.5
and temperature smoothing parameter Q ≡ ~ωc/kBT & 5). Singled period constrained by magnetic fields Bn̄+1 ≡ Bn̄+1,m̄

and Bn̄ ≡ Bn̄,m̄−1 is shown. Center of period at field B̄n̄ ≡ Bm̄,n̄ is shown by the vertical line, bn̄ = Bn̄+1Bn̄/2F is half-
period, b = B − Bn̄, kn̄ = π/bn̄ is the cyclic frequency relative to magnetic field. Energies are drawn in the ~ωc/2 units:
x(b, T )/β = εn̄,−1 − ζ(B,T ) (x(b, T ) is the parametric variable), ζ̃(B,T ) = ζ(B,T ) − εF is the chemical potential oscillations,
∆s = εm̄,1 − εn̄,−1 is the spin-splitting energy (difference between nearest levels with opposite spin projections). Fermi level,
εF, is shown as zero line. Here the temperature smoothing parameter is Q = 44, the spin-splitting parameter is s = 0.35. Note
the suppression of the chemical potential oscillations with increasing of the transfer parameter, cR. Note also the symmetry of
levels dispositions relative to the Fermi level at the ends and the center of period.

and down (see Fig. 1), mc = mc0/ cosΘ is the cyclotron
mass at tilt angle Θ, mc0 is the cyclotron mass at Θ = 0).
However, the wave forms of spin-split oscillations in the
formalism of level approach which stems from the work of
Peierls [12] (direct summation on symmetric electron and
hole pairs of spin-split levels around Fermi level in any
period of oscillations) were not considered. In the high
magnetic field-low temperature region analysis based on
Lifshitz-Kosevich (LK) formulae is inefficient: formalism
of harmonic approach (LK harmonics series) neglecting
the chemical potential oscillations gives inverse sawtooth
wave form at ultralow temperature, characteristic of con-
stant chemical potential [13] which is not generally the
case in 2D organic metals. Recently spin-split oscillations
at T = 0 were considered in the formalism of harmonic
approach, the electron reservoir (background) states ex-
plicitly being taken into account [14] (see also [15,16]).

Here we will develop theory of wave forms of spin-
split magnetization oscillations for a 2D electron system
containing both spin-split quantum levels and magnetic
field independent levels of reservoir at arbitrary tempera-
ture. Simple analytical formulae in the formalism of level
approach will be derived describing magnetization wave
forms with spin-split structure in the entire magnetic
field-temperature region corresponding to the tempera-
ture smoothing parameter Q & 1. The obtained analytical

results will be valid in the interval of quantizing magnetic
fields satisfying the conditions: kBT . }ωc(B) . εF (εF is
the Fermi energy counted from the bottom of quantized
band).

We will prove the ab initio not obvious fact that gen-
eral proportionality relationship between magnetization
and chemical potential oscillations [17] exists indepen-
dently of spin-degenerate or spin-split energy levels and
the equilibrium exchange of quantized carriers with those
on field independent levels. This exchange does not influ-
ence magnetization amplitudes which are the subject to
suppression by the other reasons: by the increasing tem-
perature, level broadening, etc. The similar suppression
concerns the spin-split structure, its shape also being de-
termined by the equilibrium transfer of carriers between
quantum and field independent levels. We will generalize
the parametric method derived in reference [17] for a sys-
tem with spin-split levels. The basic equation for chemical
potential oscillations determining the shape of magneto-
quantum oscillations will be shown to be invariant relative
to the various models of energy bands in 2D metals (in-
tersecting or overlapping) and presence of localized states.
Here we consider model of overlapping 2D and 1D bands
characteristic of organic 2D metals (in Refs. [17,18] the
model of intersecting bands was elaborated).
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It should be noted that in the semiclassical theory of
magnetoquantum oscillations applied here the correlation
between electrons is taken into account in a way as it is
done in the Fermi liquid concept, through the notion of
effective (cyclotron) mass entering into the quasiparticle
spectrum of conduction electrons of a metal [19]. The ap-
plicability of semiclassical approach to description of mag-
netoquantum oscillations in 2D metals was demonstrated
by comparing the semiclassical LK formulae with numer-
ical microscopic quantum-mechanical calculations for de-
termining the effective mass [20–22].

In Section 2 we consider in the formalism of level ap-
proach the general expression for magnetization and basic
equation for chemical potential oscillations, both account-
ing for spin-split quantum levels and magnetic field inde-
pendent states of reservoir. The model of overlapping 2D
and 1D bands is elaborated.

In Section 3 we apply the parametric method for cal-
culating the exact wave form of oscillations accounting
for spin-splitting of discrete quantum levels. We compare
these wave forms with those obtained via the LK formu-
lae adapted for 2D electron systems by Shoenberg (LKS
formula [23]) and at ultralow temperature with Nakano
formula [14] accounting for reservoir states at T = 0. We
compare theoretical shapes of magnetization oscillations
with experimental ones around kink magnetic field in or-
ganic metal α-(ET)2KHg(SNC)4.

2 Basic relations for spin-split oscillations
in a 2D metal. Model of overlapping
2D and 1D bands

Thermodynamic potential of spin-split Fermi liquid in a
2D metal (ensemble of electrons being situated on spin-
split levels of the 2D subband and moving under high
magnetic field on quantized closed orbits) can be written
as [24,25]:

ΩLL(B, ζ)/V
A

= −B
β

[∑
n=0

1
2

ln (1 + exp[(ζ − εn,−1(B))β])

+
∑
m=0

1
2

ln (1 + exp[(ζ − εm,1(B))β])

]
, (1)

where A ≡ 2 cosΘ/c∗φ0, φ0 = hc/e is the flux quantum,
β ≡ 1/kBT , c∗ is the lattice constant in the anisotropic kz-
direction of a metal, Θ is the angle between the anisotropic
axis c∗ and the magnetic induction vector B, ζ is the
chemical potential generally dependent on magnetic field,
V is the crystal volume.

Energy spectrum of quantized carriers is represented
by the spin-split Landau levels, those with spin oriented
along magnetic field:

εn,−1(B) = ~ωc(B)(n + 1/2)− 1
2
g

2
~ωe(B),

n = 0, 1, 2, · · · , (2)

and those with spin oriented opposite magnetic field:

εm,1(B) = ~ωc(B)(m + 1/2) +
1
2
g

2
~ωe(B),

m = 0, 1, 2, · · · , (3)

where ~ωc(B)=µcB is the levels separation corresponding
to the cyclotron mass (µc ≡ e~/mcc), ωe(B) = eB/mec
is the cyclotron frequency corresponding to the electron
mass, me.

The intersections of these quantum levels on vary-
ing the magnetic field with the Fermi level, εF, lead to
the effect of magnetoquantum oscillations in a metal (see
Fig. 1).

Let us separate any single quasiperiod by magnetic
fields between which two nearest levels with fixed quantum
numbers, n̄ and m̄, and opposite orientation of spin cross
the Fermi level, εF (see Fig. 1): Bn̄+1 ≡ Bn̄+1,m̄ 6 B 6
Bn̄ ≡ Bn̄,m̄−1. Field Bn̄,m̄−1 ≡ Bn̄ at the right end of the
period (and similar field Bn̄+1,m̄ ≡ Bn̄+1 at the left end
of the period) is defined so that at this field Fermi level
is situated on the equal distance from the two successive
levels with opposite spin:

[εn̄,−1(Bn̄) + εm̄−1,1(Bn̄)]/2 = εF, (4)

so that local symmetry of these levels relative to the Fermi
level at this magnetic field holds. The similar relation
holds for the left end of quasiperiod at field Bn̄+1. At
the middle of the period we define in a similar way the
magnetic field, Bm̄,n̄ ≡ B̄n̄, where two nearest levels with
opposite spin orientation, n̄ and m̄, are situated on equal
distances from the Fermi level:

[εn̄,−1(B̄n̄) + εm̄,1(B̄n̄)]/2 = εF. (5)

Using the definition of spin-split levels, equations (2)
and (3), we can introduce the spin-splitting parame-
ter [11]:

s(G) ≡ ∆s

~ωc
= |G− I(G)|, G ≡ (g/2)(mc/me), (6)

where the energy difference between the two nearest
spin-split levels with opposite spin projections (the spin-
splitting energy) is (see Fig. 1):

∆s ≡ |εn̄,−1 − εm̄,1|, (7)

and

I(G) = [G] = n̄− m̄ , I = 0, 1, 2, ... (8)

is the nearest integer to the value of G (the designation
[G] stands here for the nearest integer to the value of G:
for example, for G = 4.8, I = 5, for G = 4.2, I = 4;
in both cases spin-splitting parameter is s = 0.2). From
its definition, equation (6), it is clear that spin-splitting
parameter ranges in the limits 0 6 s 6 0.5 at all values
of the parameter G. For an integer value of G the spin-
splitting parameter is zero and high-lying spin-split levels
are coinciding (the degeneracy of quantized levels relative
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to spin projection), only in the case of g ≡ 0 all levels are
degenerate (namely this particular case is usually consid-
ered in the theory of magnetoquantum oscillations in 2D
metal [17,18,26]). For half-integer values of G the spin-
splitting parameter is maximal (s = 0.5) and the spin-
split levels are equidistant with energy separation equal
to ~ωc/2. Hence, the spin-splitting parameter is a periodi-
cal function of the argument G with period equal to unity:
s(G) = s(G+ 1).

The basic equation for the chemical potential oscilla-
tions ζ̃(B) = ζ(B) − εF for the model of intersecting 2D
and 1D bands (including the electrons on localized levels)
in accounting for spin-splitting of Landau levels may be
written (derivation similar to that done in the Ref. [17]:
see Appendix):

F

B
− F

Bn̄
= − b

2bn̄
= gs(x,Q) + cR

ζ̃(b)
~ωc

,

cR ≡ µc[∂nR(ζ)/∂ζ]εF/A, (9)

where F is the fundamental frequency of oscillations rela-
tive to the inverse magnetic field (1/F = 1/Bn̄+1− 1/Bn̄,
see Fig. 1), magnetic field is counted from the Bn̄, b =
B − Bn̄, bn̄ = Bn̄+1 Bn̄/2F = π/kn̄ is half period of os-
cillations [kn̄ = 2πF/Bn̄+1Bn̄ is the cyclic fundamental
frequency relative to the magnetic field difference, b =
B − Bn̄]. Equation for the chemical potential oscillations
(Eq. (9)) is fulfilled for every quasiperiod Bn̄+1 6 B 6 Bn̄
or −2bn̄ 6 b 6 0. The transfer parameter cR is determined
by the density of electrons filling the magnetic field inde-
pendent levels of the reservoir: nR(ζ) = nsh(ζ) + nA(ζ)
(nsh(ζ) is the concentration of free electrons situated on
the open electron-like orbits (around open 1D Fermi sur-
face sheet), nA(ζ) is the concentration of localized elec-
trons on the acceptor levels of impurities or defects). Here
we do not take into account the possible dependence of
the transfer parameter cR on chemical potential oscilla-
tions ζ̃(b) which may be due to the omitting terms of the
expansion of nR(εF + ζ̃) on ζ̃, except of the linear. This
transfer parameter is independent of the tilt angle of the
magnetic field relative to the anisotropic axis, as it should
be for the thermal (equilibrium) exchange of quantized
and nonquantized carriers between different energy bands
and/or localized states. In the case of spin-split levels the
g-function entering into the equation for chemical poten-
tial oscillations (Eq. (9)) will be:

gs(x,Q) = g−1(x,Q) + g1(x+ sQ,Q),

g−1(x,Q) ≡ 1/2
1 + exp (x)

+
n̄∑
k=1

[
1/2

1 + exp (kQ+ x)
− 1/2

1 + exp (kQ− x)

]

=
1/2

1 + exp (x)
−

n̄∑
k=1

(1/2) sinhx
coshx+ cosh (kQ)

,

g1(x+ sQ,Q) ≡ 1/2
1 + exp (x+ sQ)

+
m̄∑
k=1

[
1/2

1 + exp [kQ+ (x+ sQ)]

− 1/2
1 + exp [kQ− (x+ sQ)]

]
=

1/2
1 + exp (x+ sQ)

−
m̄∑
k=1

(1/2) sinh (x+ sQ)
cosh (x+ sQ) + cosh (kQ)

, (10)

where x(B, T ) ≡ [εn̄,−1(B)−ζ(B, T )]/kBT, Q ≡ ~ωc/kBT.
At magnetic fields Bn̄ and Bn̄+1 the chemical potential

crosses the Fermi level, so as at field, B̄n̄, where the aver-
age curve between separated levels εn̄,−1 and εm̄,1 inter-
sects with Fermi level (see Fig. 1). At these magnetic fields
the energy levels can be arranged symmetrically relative
to the Fermi level so that at the center of period where
x(B̄n̄) = −(s/2)Q the function gs(−(s/2)Q,Q) = 1/2, at
the right end of the period where x(Bn̄) = Q(1 − s)/2
the function gs(Q(1 − s)/2, Q) = 0 and at the left end
of the period where x(Bn̄+1) = −Q(1 + s)/2 the function
gs(−Q(1+s)/2, Q) = 1. Hence, the function gs(x,Q) plays
the role of the effective filling of the two nearest spin-split
levels, εn̄,−1 and εm̄,1, in total: at magnetic field Bn̄ they
are empty, at B̄n̄-half-filled, at Bn̄+1-filled. These values
of the gs(x,Q)-function do not depend on the parame-
ter Q, i.e., do not depend on temperature for the mag-
netic fields Bn̄+1, B̄n̄, Bn̄. These values of the gs(x,Q)-
function are completely determined by the symmetrical
dispositions of levels relative to the Fermi level at these
magnetic fields. The two other remaining intersections of
the chemical potential with Fermi level inside the sepa-
rated period do depend on temperature (through the pa-
rameter Q) (see Fig. 1). In the case of spin-degenerate
levels the latter intersections are absent: they coalesce si-
multaneously with nearest εn̄,−1 and εm̄,1 levels with the
intersection at the center of period at magnetic field B̄n̄.
On s = 0 the gs(x,Q)-function certainly coincides with
the g(x,Q)-function defined for the spin-degenerate levels
in reference [17].

The equation for chemical potential oscillations in the
guise of equation (9) is written in the invariant form rel-
ative to the band structure of a metal and presence of
localized states. In the case of overlapping 2D and 1D
bands (see Fig. 2) we obtain the same equation for chem-
ical potential oscillations, equation (9), but with transfer
parameter

c
(ov)
R = µc|∂psh(ζ)/∂ζ|εF/A, (11)

where psh(ζ) is the hole concentration in the 1D band
(inside the 1D Fermi surface sheet).

Case of overlapping bands is appropriate to the even
number of valence electrons on a unit cell, the concentra-
tion of electrons and holes in corresponding subbands be-
ing arbitrary but equal. The concentration is determined
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Fig. 2. Model of overlapping bands. Two-dimensional (2D)
and one-dimensional (1D) subbands dispersion relations in
the direction normal to the planar 1D Fermi surface sheet,
drawn according to parabolic dispersion near the correspond-

ing extrema in the ky ≡ k-direction: ε
(2D)
k = ~

2k2/2mc0 and

ε
(1D)
k = ∆ − ~

2(π/b − k)2/2|msh|. ∆ is the subbands over-
lapping energy, εF is the Fermi energy; energies are counted
from the bottom of the 2D subband and are represented in
εb ≡ ~

2(π/b)2/2me units (εb
∼= 308 meV if b = 10 Å).

At values of ∆ ∼= 168 meV and εF
∼= 112 meV (calculated

for α-(ET)2KHg(SNC)4 organic metal in Ref. [27]) the ra-
tios ∆/εF

∼= 1.5, ∆/εef
∼= 0.75 and according to the equa-

tion (19) the transfer parameter in this case is c
(ov)
R
∼= 1.0.

Dispersion in subbands is drawn for mc0/me = mb/me = 0.7
and |msh|/me = 0.9 consistent with the above values of ∆ and
εF (mb is the effective band mass for 2D subband (without
account for many-body electron-electron and electron-phonon
interactions, see Ref. [1])). The donor level, εD, is represented
by the dashed line, the Fermi level, εF, by the dotted line.

by the overlapping energy, ∆, the energy difference be-
tween top of the 1D subband and the bottom of the 2D
subband (see Fig. 2). In a case of ∆ being positive and
∆� kBT the carriers inside subbands will be degenerate
and the magnetoquantum oscillations will be sufficiently
large for observation. The equation for the chemical po-
tential in the model of overlapping bands is:

psh(ζ) = nLL(B, ζ), (12)

where nLL(B, ζ) is the concentration of electrons on quan-
tized levels in the electron-like pocket of the 2D band.

Expanding the hole concentration in a series of ζ̃,

psh(ζ) = psh(εF) + ∂psh/∂ζ|εF ζ̃
+ (1/2)∂2psh/∂ζ

2|εF ζ̃2 + ..., (13)

and retaining only terms of the first order in ζ̃ we can de-
fine the equation for chemical potential oscillations in the
guise represented by the equation (9) with fundamental
frequency,

F =
εF

µc
=
psh(εF)
A

, (14)

where the last equality represents the equation for Fermi
energy εF.

Concentration of holes in 1D subband can be repre-
sented as:

psh(ζ) =
1

v
√
εsh

∫ ∞
0

(1 + exp[(ζ −∆+ ε)β])−1 dε√
ε
,

(15)

where εsh ≡ ~(π/b)2/2|msh|, msh < 0 is the negative ef-
fective mass of electrons moving on hole-like open orbits
inside the 1D Fermi surface sheet (see Fig. 2) with disper-
sion law εk = ∆−~2(π/b−k)2/2|msh|, k ≡ ky is the wave
vector component along the direction perpendicular to the
planar Fermi surface 1D sheet (dispersion along sheet is
neglected), v = abc∗ is the unit cell volume, a and b are
the lattice constants in the kx- and ky-directions. In a case
of degeneracy of holes, (∆− ζ)� kBT , we obtain:

psh(ζ) ∼= 1
v
√
εsh

(∆− ζ)1/2. (16)

In the latter case we get from the equation (14) the equa-
tion for determination of the Fermi energy

εF = ε
1/2
ef (∆− εF)1/2, εef ≡ 2

|msh|
mc0

~2a−2

mc0
, (17)

with solution:

εF = (εef/2)(
√

1 + 4∆/εef − 1). (18)

For transfer parameter, equation (11), we obtain for the
case of degenerate holes (see Eq. (16)):

c
(ov)
R =

ε
1/2
ef

2(∆− εF)1/2
=

εef

2εF

=
1

2(∆/εF − 1)
=

1√
1 + 4∆/εef − 1

· (19)

Let us calculate the transfer parameter for 2D organic
metal α-(ET)2KHg(SNC)4 supposing that situation with
hole pocket + electron sheet gives the same results for
transfer parameter as electron pocket + hole sheet. Using
the calculations of its band structure in reference [2,27]
from where we can obtain ∆/εF

∼= 1.5 and using relation
∆/εef = ∆/εF(∆/εF−1) (following from the Eq. (17)) we
obtain ∆/εef

∼= 0.75 and c
(ov)
R
∼= 1.

Proportionality relation between magnetization and
chemical potential oscillations in a 2D metal under high
quantizing magnetic field has been recovered for ensem-
ble of electrons filling spin-degenerate discrete energy lev-
els [18] (spin-degenerate Landau levels). The total number
of electrons on corresponding quantized closed orbits was
supposed to be constant (independent on magnetic field).
Similar relation has been proved for such an ensemble in
the presence of reservoir of electrons situated on magnetic
field independent levels [17]. Acting as in reference [17]
(see Appendix) we obtain for 2D electron system with
spin-split Landau levels (at temperatures and magnetic
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fields fulfilling the conditions: kBT . ~ωc(B) (Q & 1) and
B/F = ~ωc(B)/εF � 1) the same relation as for the case
of spin-degenerate quantum levels (more exactly, as for
the case with electron g-factor g ≡ 0):

M(b)
M0

=
2

~ωc(Bn̄)
(1 + cR)ζ̃(b). (20)

Both this relation and equation for the chemical po-
tential oscillations (Eq. (9)) provide the framework inside
which the complete picture of magnetization oscillations
may be described quantitatively: not only the oscillations
amplitudes but also their wave forms may be calculated
for any strength of electrons transfer between quantum
(field dependent) and field independent energy levels. The
knowledge of oscillations wave forms may be of interest
in problems connected with magnetic interaction [1] of
electrons leading to effects of magnetic instability inside
Fermi liquid: diamagnetic phase transitions and diamag-
netic (Condon) domains [28].

3 Wave form of spin-split chemical potential
and magnetization oscillations. Comparison
to experiment

Here we generalize the parametric method, derived in
reference [17] for spin-degenerate levels, for calculation
of wave forms of the chemical potential and magnetiza-
tion oscillations with spin-split structure. Throughout this
chapter we will not identify the definite reservoir deter-
mining the value of the transfer parameter cR, hence, the
results will be valid for any reservoir.

Extending the separated level εn̄,−1(B) in a series on
small quantity b/Bn̄:

εn̄,−1(B) = εn̄,−1(Bn̄) +
∂εn̄,−1

∂B

∣∣∣
Bn̄

(B −Bn̄) + · · ·

= εF + (1− s)~ω(Bn̄)
2

+
εn̄,−1(Bn̄)

Bn̄
b+ · · · , (21)

and presenting the chemical potential as: ζ(B) = εF + ζ̃(b)
we obtain the variable x = [εn̄,−1(B)−ζ(B)]/kBT by using
the condition 2bn̄ � Bn̄ in the form:

2
Q
x = 1− s+

b

bn̄
− 2
~ωc

ζ̃(b), (22)

where bn̄, determined here as 2εn̄,−1(Bn̄)/~ωc(Bn̄)Bn̄ ∼=
2εF/µcBn̄Bn̄ = 2F/Bn̄Bn̄ ∼= 2F/Bn̄+1Bn̄ = 1/bn̄, co-
incide with the earlier definition of the halfperiod in
the approximation, 2bn̄/Bn̄ � 1. Exact definition of
the quasiperiod is (see Fig. 1): 2bn̄ = Bn̄ − Bn̄+1 ≡
Bn̄,m̄−1 − Bn̄+1,m̄ = Bn̄+1,m̄Bn̄,m̄−1/F ≡ Bn̄+1Bn̄/F .
This follows from the relations: F = Bn̄,m̄−1(n̄+ m̄)/2 =
Bn̄+1,m̄(n̄+1+m̄+1)/2 = B

n̄,m̄
(n̄+m̄+1)/2 correspond-

ing to magnetic fields at the right end of the period, at
the left end and in the center (these relations follow from
definitions of those magnetic fields corresponding to inter-
sections of mean curves between spin-split levels with the

Fermi level in the singled period, Eqs. (4) and (5)). Note
the identity definitions used throughout: Bn̄,m̄−1 ≡ Bn̄
and Bn̄+1,m̄ ≡ Bn̄+1 and Bn̄,m̄ ≡ B̄n̄, see Figure 1. In the
above derivation of the equation (22) we have ignored the
field dependence of the separation between levels with the
same spin, i.e. of ~ωc(B), within the singled quasiperiod.
The account of this dependence reveals the asymmetry of
the oscillations inside any quasiperiod. The following ex-
pressions obtained within first order in the approximation
2bn̄ � Bn̄ will give antisymmetric wave form inside any
period.

Solving the pair of equations, equations (9) and (22),
relative to the variables ζ̃ and b/bn̄ we obtain them as ex-
plicit functions of x, which will be served here as a para-
metric variable:

2
~ωc

ζ̃(x) =
1

1 + cR

[
−2gs(x,Q) +

(
1− s− 2

Q
x

)]
,

(23)

−b(x)
bn̄
≡ −kn̄b(x)

π

=
2

1 + cR

[
gs(x,Q)+

cR
2

(
1−s− 2

Q
x

)]
. (24)

Changing the parametric variable x in the interval corre-
sponding to the separated fixed period (“boundary” con-
ditions for the parametric variable x, see Fig. 1):

−(1 + s)
Q

2
6 x 6 (1− s)Q

2
, (25)

we obtain explicit solution for the chemical potential os-
cillations as a function of magnetic field, ζ̃(b), in the sep-
arated quasiperiod −2bn̄ 6 b 6 0 (see the left period rela-
tive to the fixed magnetic field Bn̄ in Fig. 1). It should be
noted that due to the spin-splitting the “boundary” con-
ditions for the parametric variable at the ends of a singled
period are asymmetrical (contrary to the case of s = 0
where they are antisymmetric: −Q/2 6 x 6 Q/2).

As it is seen from equations (23) and (24) and “bound-
ary” conditions for the separated period (Eq. (25)) the
parametric solution for the chemical potential oscilla-
tions in a case of spin-split levels is determined by the
three parameters: the temperature smoothing parame-
ter Q, characterizing magnetic field and temperature, the
spin-splitting parameter s, characterizing the electron g-
factor, and the transfer parameter cR, describing the ther-
mal exchange of carriers between Fermi surface cylin-
der and open parts of the Fermi surface and/or localized
states. As it is seen, namely this latter parameter influ-
ences the amplitude of the chemical potential oscillations
suppressing it greatly at all Q: from equation (23) fol-
lows that at cR � 1 the oscillating part of the chemical
potential ζ̃ → 0 at all magnetic fields inside the period,
−2bn̄ 6 b 6 0 (note that the gs(x,Q) function changes
in the range 0 6 gs(x,Q) 6 1 and as was shown in
Ref. [11] the maximal value of the parametric variable x is
xm
∼= ln[(Q/2)(1 + exp(−sQ))], both independent on the

transfer parameter cR).
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The parametric method allows in calculation of the
gs-function to sum on constraint number (usually a few)
of symmetrical pairs of electron-like and hole-like levels
around the Fermi level. This is the essence of the ap-
proach which we call the level approach (in contrast to the
Lifshitz-Kosevich (LK) approach which may be called the
harmonic approach). The LK harmonic approach based
on the Poisson summation formula is better justified and
more simple for application in low magnetic field-high
temperature region (Q . 10). The level approach works
better in the high magnetic field-low temperature region
(Q & 10). As will be shown later on except for the high
temperature-low magnetic field region (Q < 5) leaving
only one term in sums entering into the gs-function is
enough for getting the exact results. In this approach only
six spin-split levels around the Fermi level are taken into
account (six spin-split level approximation, see Fig. 1)
which gives exact results for all actual region of tempera-
tures and magnetic fields (Q & 5) and all values of spin-
splitting parameter, 0 6 s 6 0.5. On taking into account
the antisymmetry of magnetization inside any period the
necessary number of spin-split levels reduces to three. The
merit of parametric method that it gives the exact descrip-
tion not only of the temperature and magnetic field de-
pendences of the amplitudes but also of the wave form of
magnetoquantum oscillations. Parametric method is appli-
cable at all temperatures and magnetic fields under study
(Q & 1) and fully takes into account chemical potential
oscillations which are determined by the strength of the
equilibrium transfer of carriers between closed orbits and
reservoir.

Chemical potential oscillations with spin-split struc-
ture for various transfer parameter, cR, are shown in Fig-
ure 1. It is seen that yet at cR ∼ 1 (Fig. 1, curve 2) the
wave form of the chemical potential oscillations is sym-
metrized and for large cR & 10 (Fig. 1, curve 3) their
amplitudes are almost completely suppressed. Hence, in
the presence of open parts of the Fermi surface and/or lo-
calized states (i.e., for possibility of thermal exchange of
quantized carriers with nonquantized ones from reservoir)
for moderate values of the transfer parameter cR ∼ 1 the
chemical potential oscillations are seen as symmetric even
at ultralow temperatures, T → 0. In low temperature-high
magnetic field region (for large Q beginning from Q & 10)
the oscillations of the chemical potential have nearly saw-
tooth shape for small transfer parameter cR � 1 (this
is relevant also for spin-split structure at sQ & 10 (see
Fig. 1, curve 1)).

The expression for the chemical potential (Eq. (23)),
being substituted into the expression for the magnetiza-
tion, equation (20), gives magnetization as a function of
parametric variable x:

M(x)
M0

= 1− s− 2gs(x,Q)− 2
Q
x. (26)

Taking derivative with respect to b of the equation (26)
and noting that (∂x/∂b)bex = Q/2bn̄ (see Eq. (22)) we ob-
tain at the extremums of magnetization (or chemical po-
tential) the equation for the corresponding value of para-

Fig. 3. Spin-split magnetization oscillations in 2D metal in the
intermediate temperature-magnetic field region: Q = 30. Cal-
culated in level approach according to the parametric equa-
tions (24–26) with gs-function (Eq. (10)) taken in 6 spin-
split level approximation. Spin-splitting parameter is s = 0.3.
Curves 1–4 are drawn for different transfer parameter cR =
0.1, 1.0, 10, 100. Curve 5 (dotted) is plotted according to LKS
formula (see Eq. (28)) taken in 6 harmonic approximation.
Note shifting of the main and spin-splitting maxima to the
left and symmetrizing of the wave shapes of oscillations with
increasing transfer parameter cR. Note also the coincidence of
shapes in harmonic (curve 5) and level (curve 4) approaches
for large transfer parameter cR = 100.

metric variable, xex ≡ x(bex):

1
Q

= −∂gs(x,Q)
∂x

∣∣∣
xex

. (27)

Remarkable, that the values of the parametric vari-
able, xex, corresponding to the magnetic fields where the
extremums of the magnetization (and chemical potential)
take place, bex, are found from the last equation, which is
independent on the transfer parameter, cR. We see that
the magnetization amplitudes M(xex) (the main (Mn) and
that of the spin-split structure (ss) [11]) obtained from
equation (26) are also independent on the transfer param-
eter. The connection between bex and xex is through the
equation (24) dependent on the transfer parameter. Con-
sequently, magnetic fields of the extremal values of mag-
netization, bex, determining the wave form of oscillations,
are greatly depending on the transfer parameter, cR.

These results are illustrated in Figures 3 and 4 for
low and ultralow temperatures. Magnetization oscillations
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Fig. 4. Spin-split magnetization oscillations in 2D metal in ul-
tralow temperature-high magnetic field region: Q = 100. Cal-
culations as in Figure 3. Note the triangle shape of oscillations
in the level approach (curves 1–4) and additive structure on
the right side of the main maximum in harmonic approach
(dotted curve 8) which may be due to the insufficiency of the 6
harmonic approximation in the LKS formula for description of
wave form at such low temperature. Curves 5, 6 and 7 (triangle
symbols) correspond to spin-split oscillations at T = 0, s = 0.3
and transfer parameter cR = 10, 1.0, 0.1 (calculated according
to formulae obtained in harmonic approach with explicit ac-
count of background (unquantized) states in the Ref. [14], see
text, Sect. 3). Note also the additive structure on curves 5
(cR = 10) and 7 (cR = 0.1) as on the LKS curve 8.

with spin-split structure are seen as smooth in intermedi-
ate temperature-magnetic field region (which may be de-
fined approximately as determined by the values of the Q-
parameter and spin-splitting parameter, sQ & 10, Fig. 3),
and of the triangle-like shape in the ultralow temperature-
high magnetic field region (sQ & 30, Fig. 4). For values
of the transfer parameter cR ∼ 1 the oscillations are seen
as symmetric as compared with sawtooth-like shape at
cR � 1 and inverse-sawtooth-like shape at cR � 1. It
is interesting to note that for the value of the transfer
parameter to be equal to unity, cR = 1, magnetization os-
cillations are seen as strictly symmetrical at ultralow tem-
peratures, T → 0 (compare curves 2 from Figs. 3 and 4).
This result was rigorously obtained in reference [18] for
spin-unsplit (s = 0) oscillations via calculation of para-
magnetic, χp, and diamagnetic, χd, susceptibilities at the
center and edge of the period (at magnetic fields B̄n̄ and
Bn̄ (see Fig. 1)): it was shown that |χd|/χp → 1/cR at
T → 0. For comparison with our results it is useful to

represent the LK formula (LK formula adapted for 2D
systems by Shoenberg [23] – LKS formula) as a series of
harmonics, functions of magnetic field counted from the
fixed magnetic field, Bn̄ (b = B −Bn̄):

M (LKS)(b)/M0 =
∑
l=1

(−1)lal(s,Q) sin (lkn̄b), (28)

where al(s,Q) = 4π cos (lπs)/[Q sinh (l2π2/Q)] are the
amplitudes of harmonics for spin-split levels [1]. This for-
mula serves for even numbers of the integer parameter I =
[G], for odd numbers of I the factor (−1)l should be omit-
ted and the above formula describes oscillations shifted
on half period. Magnetization oscillations with spin-split
structure calculated according to the LKS formula, equa-
tion (28), are shown in Figure 3 (curve 5) and Figure 4
(curve 8) (dotted curves). As expected they nearly co-
incide with exact results obtained in the level approach
(Eqs. (24–26)) for large transfer parameter cR & 10. We
see that at substantial values of the transfer parameter
cR � 1 the main and spin-split maximums shift to the
left, on very great values reaching those positions obtained
by the LKS formula. It is clear now, why the LK-type
formulae neglecting completely the chemical potential os-
cillations in 2D metals have been such successfully used
for determining the cyclotron mass from the temperature
dependence of magnetization oscillations amplitudes. The
answer is clear from the above results: because of the in-
dependence of magnetization amplitudes on chemical po-
tential oscillations.

Recently the spin factor of de Haas-van Alphen os-
cillations in the model of 2D quantized + 2D unquan-
tized bands (2D unquantized band serving as the electron
reservoir) at T = 0 was obtained in the formalism of har-
monic approach [14]. The analytical formula for magneti-
zation as function of magnetic field can be represented
as M (Nak)/M0 = (2/π)Σl=1[(−1)l/l]Rl(s, cR) sin (lkn̄b)
(where the spin-factor Rl(s, cR) should be taken from the
Ref. [14]) and in this form compared with our results at
ultralow temperature (see Fig. 4, curves 5–7).

The explicit solution for magnetization with spin-split
structure can be provided only in the case of completely
fixed chemical potential (at cR → ∞) inside any period,
−2bn̄ 6 b 6 0:

M(b)
M0

= − b

bn̄
− 2gs(x,Q), x(b) =

Q

2

(
1− s+

b

bn̄

)
,

(29)

which serves as the level approach analog of the harmonic
approach given by the LKS formula (28).

For the span between main and spin-split maxima we
obtain using equation (27):

w

2bn̄
∼= 1− 1

1 + cR

[1
2

+ cR(1− s)
]
. (30)

The above simple relation can be used for estimating the
spin-split parameter s if transfer parameter cR is known
or vice versa for given experimental value of w/2bn̄. For
constant number of quantized carriers (cR = 0) the span
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between magnetic fields corresponding to the minimal
(maximal) values of magnetization is w/2bn̄ = 1/2, i.e.
equal to the halfperiod. For constant chemical potential
(cR → ∞) we have w/2bn̄ = s. For cR = 1 the span
w/2bn̄ = 1/4 + s/2, i.e. for s . 0.5 is slightly less than
halfperiod.

Let us compare our analytical results concerning
wave forms of magnetization oscillations with spin-split
structure with available experimental data for quasi-two-
dimensional organic metal α-(ET)2KHg(SNC)4 (and the
like salts). This substance is known to undergo the phase
transition around the so called kink magnetic field BK '
23 T with changing of the cyclotron mass from value un-
der (un) kink field m(un)

c /me = 1.5 to the value above (ab)
m

(ab)
c /me = 1.65 (see Ref. [6]) and the gmc/me ≡ 2G

value from 2G(un) = 4.7 (which corresponds to spin-
splitting parameter s(un) = 0.35, see Eq. (6)) to 2G(ab) =
3.63 (s(ab) = 0.185) (for the experimental gmc/me ≡ 2G
values in phases under and above kink field, see Ref. [8]).
There is not up to now an unanimous opinion about Fermi
surface structure of this salt under the kink field at low
temperatures where the prominent split structure in mag-
netization is observed [3]. There are various calculations of
their band structure (see reviews [2,3]) admitting the dif-
ferent nesting of the quasi-1D Fermi surface sheets and,
consequently, the reconstructed Fermi surface [29]. Nev-
ertheless, we will risk to explain the attenuation of the
amplitude of the split magnetization under the kink field
by the spin-splitting effect (see also another explanation in
Ref. [30] as due to the effect of frequency doubling). The
spin-split structure is revealed in experiment at rather low
temperature under the kink field and disappears above [6].
This effect is confirmed by our analytical results shown in
Figures 5a (at B = 20 T) and Figure 5b (at B = 25 T).
The behavior of spin-split structure in two phases may
be explained by the combined changes in cyclotron mass
(changes in temperature smoothing Q-parameter) and the
g-factor (changes in spin-splitting s-parameter). The wave
form (i.e. shift of the maximum to the symmetrical posi-
tion) is being determined by the influence of open parts
of the Fermi surface and/or localized states (the transfer
parameter, calculated for the unreconstructed Fermi sur-
face of the abovementioned material is c(ov)

R
∼= 1). Note

that even in the model of reconstructed Fermi surface the
electron reservoir of background unquantized states might
be remained, in this case being due to the sections of un-
quantized bands of one or two dimensionality (the trans-
fer parameter for model of spin-split 2D quantized + 2D
unquantized bands at T = 0 was considered recently in
the Ref. [14]). We see from Figure 5b that the calculated
spin-split structure above kink field disappears entirely
at slightly decreased spin-splitting parameter than that
obtained experimentally in reference [8]. This discrepancy
may be due to the influence of level broadening which may
also suppress spin-splitting structure even at higher val-
ues of spin-splitting parameter. The level broadening due
to impurity scattering has been accounted for recently in
references [31,32] for models with fixed chemical potential

(cR →∞) and constant number of electrons on quantized
levels (cR = 0). The theory of magnetization oscillations
in framework of level approach accounting for broadened
spin-split Landau levels and any background density of
states (∞ > cR > 0) is in progress.

4 Conclusion

The paper is devoted to the development of a theory of
magnetoquantum oscillations with spin-split structure in
a 2D metal in the framework of formalism of level ap-
proach – direct summation on quantum levels around
Fermi level in any period of oscillations [12,18,26]. Para-
metric method [17] was generalized for getting wave forms
of spin-split oscillations. Equilibrium exchange of carriers
between spin-split levels and field independent levels rep-
resented by the reservoir via equation for chemical poten-
tial oscillations accounts for the diversity of wave forms
of spin-split magnetization oscillations. The effect of spin-
splitting has been unaccounted for in the previous mod-
els which did take into account chemical potential oscil-
lations [18,33], but dealt with spin-degenerate (unsplit)
energy levels.

Analytical parametric formulae for calculating wave
forms of spin-split oscillations are expressed via the gs-
function containing summation on pairs of spin-split elec-
tron and hole levels symmetric inside the given period.
The simplicity of the formalism of level approach mani-
fests itself in calculations when only a few number of levels
should be taken into account in all actual region of mag-
netic fields and temperatures and spin-splitting parame-
ter. In extreme case of ultra-low temperatures (Q� 10),
in a model with spin-split levels, for calculating of the
main and spin-split amplitudes only account of two spin-
split separated in singled period levels is enough [11]. Ex-
act wave form of oscillations is obtained here by using
only six spin-split levels (see Fig. 1) in all actual region
of temperature-magnetic field (for all values of the tem-
perature smoothing parameter Q & 5 and in all region
of spin-splitting parameter 0 6 s 6 0.5). If we take into
account that for periods corresponding to large quantum
numbers the magnetization is antisymmetric function rel-
ative to the center of period the needed spin-split levels
are reduced to three. The merit of the level approach that
it fully employs the inherent local symmetry of level dis-
positions relative to the Fermi energy inside any period.

We have proved general proportionality relation be-
tween magnetization and chemical potential oscilla-
tions [17] for system with quantum spin-split levels and
magnetic field independent states. Main amplitude, so as
spin-split amplitude [11], are proved to be independent on
the presence of electron reservoir. All the difference for
models of intersecting or overlapping 2D and 1D bands
is in the concrete expression for the transfer parame-
ter cR entering in general form into the basic equation
for chemical potential oscillations (Eq. (9)), which in its
turn is written in its canonical form with gs(x,Q)-function
(Eq. (10)). Here we have calculated the corresponding de-
position c(ov)

R into the transfer parameter cR in the model
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Fig. 5. Magnetization oscillations around kink magnetic field BK
∼= 23 T in organic metal α-(ET)2KHg(SNC)4 (calculated

according to the Eqs. (24–26) with gs(x,Q)-function, Eq. (10), taken in 6 spin-split level approximation). (a) under kink

field: B = 20 T, T = 0.48 K, m
(un)
c /me = 1.5 (experimental data from Ref. [6], corresponding parameter Q = 37.2). Spin-

splitting parameter s(un) = 0.35 corresponds to the experimental value (gmc/me)
(un) = 4.7 obtained in the reference [8]. Note

that spin-split structure under kink field persists at all values of spin-splitting parameter used: curve 1: s = 0.25, curve 2:

s = 0.30, curve 3: s = 0.35. (b) above kink field: B = 25 T, T = 0, 48 K, m
(ab)
c /me = 1.65 (experimental data from Ref. [6],

corresponding parameter Q = 42.3). Spin-splitting parameter above kink field s(ab) = 0.185 corresponds to the experimental
value of (gmc/me)

(ab) = 3.63 from reference [8]. Note that slight hint on the spin-split structure above kink field for spin-splitting
parameter s = 0.185 (curve 3) disappears at s = 0.135 (curve 2) and s = 0.085 (curve 1). Note that all calculated curves from
(a) and curves 2 and 1 from (b) repeat obtained in reference [6] experimental structure of magnetization oscillations around
kink field (KF): with spin-split structure under KF and without above.

of overlapping 2D and 1D bands characteristic of quasi 2D
organic metals.

The wave form of spin-split oscillations obtained at
low and ultralow temperatures differs distinctly. At low
temperatures (sQ & 10) the shape of magnetization oscil-
lations is seen as rather smooth. At ultralow temperatures
the wave form of oscillations acquires the triangle-like
shape. At transfer parameter cR = 1 and ultralow temper-
ature, T → 0, the oscillations are looking as completely
symmetrical. This contrasts distinctly the extreme cases
of constant number of quantized carriers (cR = 0) and
constant chemical potential (cR → ∞) for which magne-
tization oscillations acquire extreme sawtooth (with max-
imums shifted to the extreme right) and inverse sawtooth
(with maximums shifted to the extreme left) wave forms
correspondingly.

As example of application of the developed theory
accounting for the spin-splitting effect in Landau levels

we compare calculated magnetization oscillations wave
forms at magnetic fields around kink magnetic field in
organic metal α-(ET)2KHg(SNC)4. For given experimen-
tal parameters (see Ref. [3,6]) our theory confirms the
presence of spin-split structure at magnetic fields under
the kink field and the absence above, which is an ex-
perimental yield connected with difference in the corre-
sponding gmc/me value [8] (and consequently, in values
of spin-splitting parameter s) in both phases. We have
calculated the transfer parameter for model of overlap-
ping bands that can describe the possible situation in the
abovementioned metal and obtained according to the cal-
culated value, c(ov)

R
∼= 1, symmetrical wave forms of mag-

netization oscillations both with spin-split structure and
without it notwithstanding the relatively high temperature
smoothing parameter Q. Our comparison hints on the pre-
vailing role of the change in the g-factor rather than the
cyclotron mass in traversing the phase transition around
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kink field. It should be noted that our explanation of the
split structure of magnetization under kink field is one
of the possible because topology of the Fermi surface in
α-(ET)2KHg(SNC)4 and the like salts is the subject for
further study [3] (see also Ref. [30] where the effect of fre-
quency doubling as cause of the split oscillations under
the kink field is proposed).

Calculation of wave forms of magnetoquantum oscil-
lations with spin-split structure in frameworks of exactly
soluble models as has been done in the present work will
be useful in establishing electronic structure of 2D met-
als (organic and those having quasicylindrical parts of
Fermi surface) with account of spin-splitting effect. The
experiments with high resolution of magnetoquantum os-
cillations spectra, including their shape on the length of
period of oscillations, will be basic checking tool proving
the validity of employed analytical models.

Valuable discussions with T. Maniv, I.D. Vagner and J.
Wosnitza are greatly appreciated. The support of the Center
for Absorption in Science, Ministry of Immigrant Absorption,
State of Israel (KAMEA Foundation), and the Israel Science
Foundation (Israel Academy of Sciences and Humanities) is
acknowledged.

Appendix A: Proportionality relation
between magnetization and chemical
potential oscillations in a 2D electron system
with spin-split Landau levels and background
reservoir states

Here we provide derivation of the basic equation for the
chemical potential oscillations and proportionality rela-
tion for magnetization in a 2D metal in the model of inter-
secting 2D and 1D bands, the electrons of the 2D subband
filling spin-split Landau levels and those of a 1D band fill-
ing the magnetically unperturbed reservoir states. Model
of intersecting bands but not accounting for spin-splitting
effect was considered in reference [17]. The analysis that
will be undertaken may be called the formalism of level
approach [11,12,18,26] (in contrast to the harmonic ap-
proach represented by the LK-type formulae based on the
Poisson summation formulae (see also [14,16])).

Let us separate two nearest levels with opposite pro-
jections of spin (designated by fixed quantum numbers n̄
and m̄, see Fig. 1), intersecting the Fermi level in a sin-
gle period. Rearranging summation in the thermodynamic
potential (Eq. (1)) on the two sets of spin-split levels with
opposite projections of spin lying under and above of sep-
arated levels (levels in each set are symmetric relative to
the corresponding separated level in the singled period
(see Fig. 1)) we have:

see equation (A.1) above.

In the above representation we have separated the inde-
pendent implicitly on temperature the main deposition to
the thermodynamic potential of the completely filled lev-
els under the Fermi level (with quantum numbers n < n̄
and m < m̄), the deposition of the levels intersecting the
Fermi level, εn̄,−1 and εm̄,1, and dependent explicitly on
temperature depositions of almost empty electron levels
above and almost empty hole levels under the Fermi level.

Note, that in the expressions (1, 4, 5, A.1), we have not
so far specified the energy levels, εn,−1(B) and εm,1(B),
except of using their sharpness. In what follows we will
use their explicit representation as Landau levels, equa-
tions (2) and (3).

Introducing instead of the chemical potential oscilla-
tions the dimensionless variable – the energetic difference
between the separated level εn̄,−1(B) and the chemical
potential ζ(B, T ) in kBT units (see Fig. 1):

x(B, T ) ≡ [εn̄,−1(B)− ζ(B, T )]β, (A.2)

and temperature smoothing parameter:

Q(B, T ) ≡ ~ωcβ, (A.3)

we reveal further on the main dependence of the ther-
modynamic potential on magnetic field in the separated
period via the nearest energy levels around the Fermi level
(see Fig. 1).

The levels crossing the Fermi level inside the separated
period (crossing levels), εn̄,−1, εm̄,1, and the almost empty
electron and hole energy levels around the Fermi level in-
side the separated period play the leading role in the tem-
perature dependence of the chemical potential and mag-
netization oscillations. Filled levels under the Fermi level
(the first and third term in the Eq. (A.1)) and the cross-
ing levels determine the main magnetic field dependence
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ln(1 + exp[−(kQ+ x)]) + ln(1 + exp[−(kQ− x)])

i

+
m̄X
k=1

1

2

�
ln
�
1 + exp(−[kQ+ (x+ sQ)])

�
+ ln

�
1 + exp(−[kQ− (x+ sQ)])

��#

= −B
n̄−1X
n=0

1

2
(ζ − εn,−1)−B

m̄−1X
m=0

1

2
(ζ − εm,1)− B

β
fs(x,Q),

fs(x,Q) = f−1(x,Q) + f1(x+ sQ,Q),

f−1(x,Q) ≡ 1

2
ln

�
1 + exp (−x)

�
+

n̄X
k=1

1

2
ln
h
1 + 2 exp (−kQ) coshx+ exp (−2kQ)

i
,

f1(x+ sQ,Q) ≡ 1

2
ln(1 + exp[−(x+ sQ)])

+

m̄X
k=1

1

2
ln
h
1 + 2 exp (−kQ) cosh (x+ sQ) + exp (−2kQ)

i
. (A.4)

at T → 0. With the above arrangements (Eqs. (A.1–A.3))
we obtain the representation of the thermodynamic po-
tential of quantized carriers:

See equation (A.4) above.

In reality, only a few levels around the Fermi level will
play sufficient role in determining the magnetoquantum
oscillations. Therefore, in the representation of the ther-
modynamic potential, equation (A.4), are omitted the de-
positions of the levels with quantum numbers n > 2n̄ and
m > 2m̄ as giving negligibly small contributions on large
n̄ � 1 and m̄ � 1 relative to the remaining terms de-
scribed by the symmetrically disposed levels under and
above the Fermi level.

Now let us elucidate the deposition into the thermody-
namic potential of carriers on magnetic field independent
states (nonquantized carriers). Carriers situated around
the open parts of the Fermi surface (FS) (regions in the
k-space inside FS sheets) may fill energy levels which re-
tain continuous spectrum under the high magnetic field.
Some carriers may be situated on localized magnetic field
independent levels of impurities (defects). The electrons
(or holes) on these field independent levels can thermally
exchange with carriers on the closed orbits due to the
chemical potential oscillations. Spin-splitting of carriers
in continuous and localized spectrum being neglected, the
thermodynamic potential of the nonquantized carriers is
independent explicitly on magnetic field, but only on the
chemical potential and does not make the straightforward
deposition into the magnetization:

M = −[∂(Ω/V )/∂B]ζ = −[∂(ΩLL/V )/∂B]ζ , (A.5)

where Ω = ΩLL(B, ζ)+ΩR(ζ) is the total thermodynamic
potential, ΩR(ζ) is the thermodynamic potential of non-
quantized carriers representing the reservoir.

Concentration of electrons filling the spin-split levels
inside the closed parts of the Fermi surface (here the Fermi

surface cylinder – electrons on quantized levels, nLL) and
reservoir (here the k-space inside the open Fermi surface
sheets and/or localized states – electrons on nonquantized
independent on magnetic field levels, nR) is:

nc = −
(
∂[(ΩLL(B, ζ) +ΩR(ζ))/V ]/∂ζ

)
B

= nLL(B, ζ) + nR(ζ), (A.6)

where the total number of electrons, nc, is conserved in the
magnetic field, ΩR(ζ) = Ωsh(ζ) + Ωloc(ζ) is the thermo-
dynamic potential of electrons filling the reservoir (Ωsh(ζ)
is the thermodynamic potential of carriers on continuous
levels of a FS sheet, Ωloc(ζ) is the thermodynamic poten-
tial of carriers situated on localized levels). Throughout
this appendix we are considering the case of metals with
one electron on a unit cell, which in a case of a single
not overlapping or not intersecting 2D band provides its
half-filling, nc = 1/v (v is a unit cell volume).

Let us represent the concentration of nonquantized
carriers filling the electron reservoir as a series on the oscil-
lating part of the chemical potential, ζ̃(B, T ) = ζ(B, T )−
εF. Taking into account the representation of the thermo-
dynamic potential of quantized carriers, equation (A.4),
and retaining only the linear term in the expansion of
nR(ζ) = nR(εF + ζ̃) on ζ̃, the total concentration of carri-
ers (Eq.(A.6)) may be presented as:

nc = AB
[ n̄+ m̄

2
+ gs(x,Q)

]
+ nR(εF) + [∂nR(ζ)/∂ζ]εF ζ̃(B, T ), (A.7)

where gs(x,Q)-function is determined by the equation (10)
in the Section 2.

From the equation (A.7) follows that the fundamental
frequency of oscillations relative to the inverse magnetic
field, (1/B), can be determined by relations:

F =
εF

µc
=
nc − nR(εF)

A
, µc ≡

e~
mcc

· (A.8)
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M(B)

A
=

1

2

n̄−1X
n=0

�
ζ − εn,−1 −B

∂εn,−1

∂B

�
+

1

2

m̄−1X
m=0

�
ζ − εm,1 −B

∂εm,1
∂B

�
−B∂εn̄,−1

∂B
gs(x,Q) + (1/β)fs(x,Q)− ~ωchs(x,Q),

hs(x,Q) = h−1(x,Q) + h1(x+ sQ,Q),

h−1(x,Q) ≡ 1

2

n̄X
k=1

k[cosh x+ exp (−kQ)]

coshx+ cosh (kQ)
,

h1(x,Q) ≡ 1

2

m̄X
k=1

k[cosh (x+ sQ)− s sinh (x+ sQ) + exp (−kQ)]

cosh (x+ sQ) + cosh (kQ)
, (A.10)

The last equality constitutes equation for determining the
Fermi level, εF, counted from the bottom of the 2D band
containing the quantized carriers (see Fig. 2). Note that
the fundamental frequency is the same as for the case of
degenerate on spin levels.

At magnetic field Bn̄, as follows from its definition
(Eq. (4)), the relation for fixed quantum numbers n̄ and
m̄ holds:

n̄+ m̄

2
=

εF
~ωc(Bn̄)

=
F

Bn̄
, (A.9)

where in the transition to the last equality the represen-
tation ~ωc(B) = µcB was used. Taking into account this
relation (A.9), we obtain from equations (A.7) and (A.8)
the basic equation for the chemical potential oscillations,
the equation (9) (see Sect. 2).

Now we will derive in the framework of the considered
model of spin-split levels the exact expression for magne-
tization. Taking the partial derivative of the thermody-
namic potential of quantized carriers (in the representa-
tion of Eq. (A.4)) with respect to magnetic induction B
we obtain the component of magnetization along magnetic
field:

see equation (A.10) above,
where the fs(x,Q)-function is determined in the equa-
tion (A.4). In the sums of these expressions, as in the
expression for the chemical potential (Eq. (9) with the gs-
function from Eq. (10)), we sum on the n̄ and m̄ pairs
of levels under and above the εn̄,−1 and εm̄,1 levels, the
above lying levels with quantum numbers n > 2n̄ and
m > 2m̄ being neglected as giving exponentially small de-
positions into the thermodynamic potential of the order
exp [−(2n̄+ 1)Q] and exp [−(2m̄+ 1)Q] and less for the
entire region of Q & 1. Hence, all the theory is correct
for magnetic fields fulfilling the condition: (n̄ + m̄)/2 =
εF/~ωc(B)� 1.

Performing summation in the first two terms of equa-
tion (A.10) on energy levels (Eqs. (2, 3)) lying under the
Fermi level we obtain:

1
2

n̄−1∑
n=0

(
εn,−1 +B

∂εn,−1

∂B

)
+

1
2

m̄−1∑
m=0

(
εm,1 +B

∂εm,1
∂B

)
=

n̄−1∑
n=0

εn,−1 +
m̄−1∑
m=0

εm,1 =
1
2

(n̄2 + m̄2)~ωc(B) − g

2
I

2
~ωe(B).

(A.11)

From the equations (A.9) and (8) follows:

1
2

(n̄2 + m̄2) =
[

εF

~ωc(Bn̄)

]2

+
(
I

2

)2

· (A.12)

The term from the expression for magnetization (A.10),
containing the gs(x,Q) function can be written with the
help of the equation for the chemical potential, equa-
tion (9):

− εn̄,−1(B)gs(x,Q) =[
εF + (1− s)~ωc(Bn̄)

2

][
εF

~ωc(Bn̄)
b

Bn̄
+

cR
~ωc(Bn̄)

ζ̃

]
·

(A.13)

In deriving this expression we used the relations: F/Bn̄ =
(n̄ + m̄)/2 = εF/~ωc(Bn̄), εn̄,−1(B)/B = εn̄,−1(Bn̄)/Bn̄
and εn̄,−1(Bn̄) = εF + (1− s)~ωc(Bn̄)/2 (see Fig. 1).

Using the representation ~ωc(B) = ~ωc(Bn̄)(1 +
b/Bn̄) and substituting the sum on the levels under the
Fermi level, equation (A.11) (with Eq (A.12)) and equa-
tion (A.13) into the expression (A.10), we obtain for mag-
netization in the fixed period, −2bn̄ 6 b 6 0:

M(b)
M0

=
2

~ωc(Bn̄)

{
(1 + cR)ζ̃(b) +

~ωc(Bn̄)
2

×
[
(1− s) b

Bn̄
+ (1− s)cR

ζ̃(b)
εF

+
2kBT

εF
fs(x,Q)

− 2~ωc(B)
εF

hs(x,Q) +
~ωc(B)
εF

I

(
G− I

2

)]}
, (A.14)

where M0 = εF cosΘ/φ0c
∗ is the saturation magnetiza-

tion at T → 0.
This is the exact expression for magnetization in the

considered model accounting for spin (spin-splitted or
spin-nondegenerate Landau levels, the g-factor g 6= 0).
The first two terms in the square brackets represent the
corrections to the oscillating part of magnetization repre-
sented by the first term in braces, the last terms in brack-
ets are the steady part of magnetization, the previous to
the last term being the diamagnetic contribution (diamag-
netism Landau), the last term is the paramagnetic contri-
bution (paramagnetism Pauli). It should be noted that
paramagnetic magnetization retains for spin-degenerate
quantized levels, i.e., for s = 0 (but G = I 6= 0).
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The oscillating part of magnetization (the first term
in braces) contains temperature dependence only through
temperature dependence of the chemical potential oscil-
lations and remains finite at T → 0 (as generally ζ̃(b →
0)→ ~ωc/2 at T → 0 (see Fig. 1), while the terms in the
brackets will be of the order (∼ ~ωc/εF). Hence, the first
term in the braces, proportional to chemical potential os-
cillations, is the main contribution to the magnetization
oscillations (see Eq. (20) of the main text).
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